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Abstract 

Additive manufacturing (AM) enables building of lightweight components with very complex 
geometries. However, the presence of pores in these components is common due to process 

limitations. These internal defects affect the mechanical properties of the component leading to 

deficits in the performance and service life. Therefore, they must be reliably detected and 

accurately characterised. 

Complex designs, commonly encountered in AM components, present insurmountable 

difficulties for traditional NDT approaches such as ultrasonic and eddy current methods. 

In comparison, X-ray Computed Tomography (XCT) can scan complex internal components 
with relative ease. However, due to artefacts introduced by the scanning method and associated 

with the use of polychromatic X-ray beams, simple image processing methods do not work well 

in detecting micro defects such as pores or fine cracks. 

Manual detection of pores in AM components with image processing tools requires a highly 

trained technician to scrutinise every slice in the scan, i.e. a manual procedure which is both 

unreliable and unproductive. 

Machine learning has previously been shown to improve the quality of the pixel-wise 

classification of small pores close to a single voxel in size. In this study, we propose a deep 

learning method to train a mathematical model, based on millions of deep image features, for 

accurate defect detection and characterisation.  

U-Net, an open-source deep-learning architecture was utilised to improve the classification 

accuracy of micro-porosity detection within an AM built component.  

In this paper, an application of deep learning, using U-NET architecture, to accurately classify 

pores is presented.  

The results show a significant improvement in the detectability of pixel-wise classification of 

pores compared to traditional machine learning models and image processing methods.  

The data, taken from an XCT scanned images was used to train deep learning model to 
determine micro-porosity, and the result was compared to Archimedes density experimentation 

result performed on the same coupon.  

Keywords: Artificial Intelligence, Deep Learning, U-Net, Fujitsu Engineering Cloud, XCT, 

X-ray, Computed Tomography, NDT, Additive Manufacturing 
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1 Introduction 

Additive Manufacturing (AM) is a process of building a 3-dimensional object by creating a 

component layer by layer. The latest advancement in the technology allows industry and 
researchers to print a wider range of materials [1] including aerospace-grade metals such as 

Titanium and Inconel alloys.  

This method has revolutionised the manufacturing industry and can be considered a disruptive 

innovation that opens a new frontier of discoveries.  

Despite the promising future, the quality and material integrity of an AM component is highly 

dependent on the process parameters and build design. An unoptimized parameter may result 
in a porous component filled with unfused powder, which affects the material properties and 

the useful lifetime of the component.  

XCT is one of the common methods of non-destructive evaluation during the development 

phase of an AM process. A micro-XCT scan typically captures pore information that is close 
to the voxel size. The result that is produced by XCT has been compared typically to 

Archimedes density, which is a standard method for porosity measurement for an additively 

manufactured component [2].  

X-rays are created by colliding electrons, typically produced by a charged filament in a vacuum, 

into a metal target. Industrial X-rays can typically penetrate through a dense metal component.  

An industrial XCT scan of a dense metal object is usually dominated with artefacts such as 
beam hardening and incoherent scattering [3]. This means that the scanning result gets blurry 

and it is difficult for traditional image processing techniques to segment the images accurately.  

The solution presented in this paper looks to improve the detectability of pores in an additively 

manufactured component using deep learning. 

2 Reference Component 

The design of the reference component was catered for Archimedes density measurement; a 

method of pore quantification based on relative density measurement [4]. A cylindrical 
component with a diameter of 13 mm was designed, printed and post-processed to remove 

surface roughness dependencies in the Archimedes density measurement.                            

Versions of the component were produced in three aerospace-grade materials; Ti-64, MS1, and 

AlSi10Mg. Samples were printed with different settings using an EOS M290 3D-printer to vary 
the print quality in the component. The diagram in Figure 1 illustrates the improvement of 

surface condition of the sample component. On the left is the condition as printed and on the 

right is the condition after turning and grinding prior to Archimedes density measurement. 
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Figure 1. Specimen for X-ray and Archimedes density measurement 

 

3 Deep Learning based Model 

Deep learning is a type of machine learning in which the algorithm learns to look for deep 

features in data. It was inspired by how the human brain works to process input signals [5]. It 

consists of the basic features of a neural network such as neurons or nodes, which multiplies a 

set of input data with trainable weights, sums it up followed by an activation function. These 

sets of nodes are connected to form a simple artificial neural network.  

U-NET [6] is an artificial neural network that works by such a principle. It multiplies a set of 

data input, linearizing the sum, and lowering down the dimensions by the max-pooling method, 
while concatenating the information of the layer to the corresponding up-sampling layer. 

(illustrated in Figure 2) 

 

Figure 2.U-Net layer 

U-net was originally developed for biological microscopy images, where the concatenation 

layer within the network maintains the shallow information within the image at the output so 
that the intrinsic information that is carried by the small features is not lost due to down-

sampling. This makes this network ideal to classify micro-pores which are usually only a few 

pixels in size.  
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4 Image Labelling 

The model aims to accurately classify the pores as close as possible to a human operator. Hence 

the training set has to be verified and developed by a human operator.  

In the previous study [7], it has been shown that random forest; a common machine learning 

algorithm, can be utilised to reduce false detection compared to that of a traditional method. 
However, as it still has erroneous output, a human operator needs to verify and, if needed, alter 

the machine learning segmentation to give a more accurate result according to the trained 

inspector’s judgement. 

Fiji [8] an open-source software was used to do pre-segmentation classification with the help 

of random forest algorithm. The segmented image was then checked, and corrected manually 

by an operator. The result is illustrated in Figure 3.  

 

Figure 3. Machine-learning assisted training image 

5 Model Training 

The training of U-net was conducted with different hyperparameter settings. Essentially, these 

training variables will affect the overall accuracy. Batch size is the number of images that are 

trained per step, and the steps are the number of batches of images that are taken per epoch. 

Ideally, larger the batch size, the model will “experience” more images and hence will be 
generally able to classify defect in a more varying dataset. However, larger batch size will 

require more GPU processing, and hence there is a hardware limitation on what hyperparameter 

can be set.  

 

Figure 4. The number of filter variables increments against trainable filter 
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n_filter variable denotes the number of convolutional filters in U-net architecture. The number 

of trainable filters increases exponentially as the n_filter parameter is increased (shown in Figure 

4). Hence each incremental step of this variable requires a significantly larger processing 

demand.  

To train this model, Fujitsu’s Engineering Cloud [9] Server was used with the following 

hardware specification; 

Hardware System Specification 

Operating System Windows Server 2012 R2 

CPU 
Intel® XEON® E5-1650 v4 @3.60 GHz (6 

Core) 

RAM 128 GB 

Graphics Card NVIDIA Quadro P5000 

Table 1. Hardware Specification for model training 

In many instances, a particular set of parameters saturates the memory, due to the number of 

calculations needed, and hence crashes the system. To automate the training, it is recommended 
to design a closed-loop system (illustrated in Figure 5), with the output accuracy value to be 

written in a CSV document. This way, an automatic hyperparameter optimisation can be 

achieved with little interference from the user.  

 

Figure 5. Training loop 

To quantify accuracy, a mean intersection over union (mIoU) value is used to represent the 
performance of the model. To calculate mIoU, the area of overlap between the ground truth and 

predicted image is divided by the total area of union for both ground truth and predicted output 

as illustrated in Figure 6.  
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Figure 6. Intersection over Union (IoU) calculation 

mIoU represents the percentage overlap of the ground truth image to the predicted pixels. The 

closer the value is to 1, the better the model is in predicting the defects.  

6 Results & Discussion 

The result shows that hyperparameter optimisation has a significant effect on the overall 

performance of the model. A non-optimised U-net model yields less than 65% mIoU while 

optimised hyperparameters yield above 80% mIoU.  

This result suggests that the model parameter values affect the overall accuracy of the model. 

A larger value of the n_filter variable tends to improve the model performance. However, to 
keep increasing it may require much higher computing and hence there is a hardware limitation 

stop to the number of filters that can be set for training.   

Settings no. mIoU Batch Size n_filter Epoch Steps 

1 0.631 5 16 150 10 

2 0.748 5 16 150 10 

3 0.851 5 18 150 10 

4 0.655 5 18 150 11 

5 0.742 1 20 150 11 

6 0.819 1 20 500 11 

7 0.833 1 20 500 10 

Table 2. Hyperparameter optimisation 

Apart from the number of filters, ideally, it is recommended to keep the batch size as high as 

possible. However, the increase of the batch size will also be limited by the hardware’s ability 

to perform the calculation and hence has to be balanced with the other variables.  

In this case, the model was trained on 378 training images, and the best result was obtained 

with the batch size of 5 and steps of 10. It requires a large number of epochs for the model to 

be trained on all the images. Hence training epoch above 500 is recommended.  

To improve the detection further, image augmentation can be done to alter the images and to 

increase the training set. The Keras [10] library has direct functions to augment the images 

without manual tweaking. Three functions (random zooming, rotation of the image, and 

applying random brightness to the object) were explored and the results are plotted in Table 3..  



100 3rd Singapore International Non-destructive Testing Conference and Exhibition (SINCE)

 

This function essentially alters the training and ground truth images to make the model more 

robust to feature changes from one image to another.  

 

Settings no. Val_mIoU Augmentation 

1 0.927 Zoom 

2 0.894 Rotate 

3 0.902 Random Brightness 

Table 3. mIoU improvement after Image Augmentation 

Image augmentation can be used to further train the model if there is insufficient training data. 
If the component is non-symmetrical the rotation function is useful to generate more 

randomness in the image for the model to understand.  

Zooming function is essentially useful in improving the detectability of small features as it 
enlarges the size of the pores and allows the model to train the image on deeper filters. This 

allows the model to understand the hierarchy of the features and improves the differentiation 

factors between the defects and noise. 

Using random augmentation function, the overall pore detectability increases significantly to 

92.7% under random zooming with default range. This shows that the image augmentation is a 

necessary step to improve the model to the maximum possible accuracy. 

To compare the accuracy of the model against Archimedes density measurement, the data was 

post-processed, and the pixels that belong to class pore are calculated.  

The result shows a significant correlation between AI and Archimedes values. The distribution 

diagram shown in Figure 7 shows the deviation spread of 20 cylindrical samples that were CT-

scanned and measured by Archimedes density measurement.  

 

Figure 7. Distribution of Deviation against Archimedes Density 
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For most of the data, the deviation value is less than 0.62%, here represented by the standard 

deviation value in Figure 7. The average deviation is 0.15% which represents the accuracy of 

the measurement, using Archimedes density measurement value as the reference point. 

The difference in the measurement could be attributed to the uncertainty in the Archimedes 

density measurement that can be contributed by the purity of the acetone, or the instrument’s 

accuracy.  

When plotted visually, the data shows a good segmentation result as shown in Figure 8. 

 

Figure 8. [Left] Raw reconstructed data [Right] pore segmentation using U-net 

The result shows that the detection accuracy closely matches the actual defect presented. This 

means that U-net can be used to significantly cut down post-processing time and to improve 

accuracy compared to that of a traditional image processing approach.  

 

7 Summary and Further Research 

In conclusion, the capability of deep learning to accurately segment slices of XCT reconstructed 
data with the presence of X-ray artefacts was demonstrated. This suggests that deep learning 

has a strong application within the Industrial X-ray CT domain to improve the process quality 

and productivity. U-net with image augmentation result yields above 92% detection accuracy, 

significantly improving the quality. 

Further research is required to improve the detectability and the speed of detection. Redesigning 

the neural network architecture may be required to reduce redundant layers and to extract useful 

image features more effectively.  
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